首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197570篇
  免费   27391篇
  国内免费   24203篇
电工技术   19896篇
技术理论   9篇
综合类   15104篇
化学工业   37569篇
金属工艺   8118篇
机械仪表   12806篇
建筑科学   9707篇
矿业工程   2488篇
能源动力   6348篇
轻工业   13842篇
水利工程   2991篇
石油天然气   4352篇
武器工业   2092篇
无线电   29107篇
一般工业技术   21116篇
冶金工业   4285篇
原子能技术   3288篇
自动化技术   56046篇
  2024年   466篇
  2023年   3080篇
  2022年   5211篇
  2021年   7047篇
  2020年   6869篇
  2019年   6204篇
  2018年   5733篇
  2017年   7852篇
  2016年   8772篇
  2015年   10205篇
  2014年   10190篇
  2013年   13373篇
  2012年   15410篇
  2011年   17399篇
  2010年   12674篇
  2009年   12522篇
  2008年   13829篇
  2007年   15294篇
  2006年   14516篇
  2005年   12421篇
  2004年   10447篇
  2003年   8204篇
  2002年   6155篇
  2001年   4611篇
  2000年   3598篇
  1999年   2991篇
  1998年   2438篇
  1997年   1953篇
  1996年   1687篇
  1995年   1473篇
  1994年   1295篇
  1993年   960篇
  1992年   780篇
  1991年   644篇
  1990年   539篇
  1989年   404篇
  1988年   315篇
  1987年   191篇
  1986年   180篇
  1985年   237篇
  1984年   207篇
  1983年   151篇
  1982年   200篇
  1981年   100篇
  1980年   103篇
  1979年   30篇
  1978年   19篇
  1977年   28篇
  1976年   19篇
  1959年   19篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
31.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
32.
Fe(III) ion can strongly inhibit the sulphidation amine flotation of smithsonite. However, its modification mechanism on smithsonite surface is still obscure. In this work, a systematic study of the modification of Fe(III) ion on smithsonite (1 0 1) surface was performed using DFT calculation. The optimal number of H2O ligands for Fe(III) ion hydrates in aqueous conditions was probed, and [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? were identified as the major modification species, then their adsorption and bonding mechanisms were further revealed by analyzing the frontier orbitals, density of state, Mulliken population, and electron density. The calculated adsorption structures were consistent with the former experiment, and we found the O site that bonded to the C atom on smithsonite surface was the most favorable position for [Fe(OH)2(H2O)4]+ and [Fe(OH)4]? adsorptions. Besides, their adsorption mechanisms on smithsonite surface were principally due to the combined effect of FeO bond and hydrogen bonding. Simultaneously, hydrogen bonding greatly enhanced the stability of the adsorption structures. Moreover, the dominant orbital contribution for the bonding of FeO was primarily due to the orbital hybridization between Fe 3d and O 2p orbitals. This work can help in deeper understanding of the depression of Fe(III) ion on the sulphidation amine flotation of smithsonite.  相似文献   
33.
This study deals with the manufacturing of catalyst-coated membranes (CCMs) for newcomers in the field of coating. Although there are many studies on electrode ink composition for improving the performance of proton-exchange membrane fuel cells (PEMFCs), there are few papers dealing with electrode coating itself. Usually, it is a know-how that often remains secret and constitutes the added value of scientific teams or the business of industrialists. In this paper, we identify and clarify the role of key parameters to improve coating quality and also to correlate coating quality with fuel cell performance via polarization curves and electrochemical active surface area measurements. We found that the coating configurations can affect the performance of lab-made CCMs in PEMFCs. After the repeatability of the performance obtained by our coating method has been proved, we show that: (i) edge effects, due to mask shadowing - cannot be neglected when the active surface area is low, (ii) a heterogeneous thickness electrode produces performance lower than a homogeneous thickness electrode, and (iii) the origin and storage of platinum on carbon powders are a very important source of variability in the obtained results.  相似文献   
34.
The incomplete polymerization of graphite carbon nitride (g-C3N4) due to the kinetic problems resulted in its high recombination rate of photo-generated electron-hole pairs. Hence, cyano-containing carbon nitride with coral-like morphology (CCCN) was prepared by the molten salt method with heptazine-based melem as precursor, which presented excellent separation rate of photo-generated electron-hole pairs. SEM exhibited that CCCN owned coral-like morphology which exposed ample active sites and enhanced the capture ability of visible light while FT-IR and XPS demonstrated that cyano groups appearing in coral-like carbon nitride enhanced the separation rate of photo-induced charge carriers. The synergistic effect of coral-like morphology and cyano groups endowed CCCN-15% with superior performance of both the photocatalytic H2 evolution (4207 μmol h?1 g?1) and Cr (Ⅵ) reduction (k = 0.059 min?1), approximately 16.8 and 6.0 times that of g-C3N4, which was comparable among the similar materials. Density functional theory calculation (DFT) revealed that cyano groups decreased the bandgap and strengthened the activation degree of reaction substrate, which enhanced the thermodynamic driving force and the interaction between catalyst and substrate. This work provided a potential strategy for both the renewable energy generation and environmental restoration.  相似文献   
35.
Highly-efficient and stable non-noble metal electrocatalysts for overcoming the sluggish kinetics of oxygen evolution reaction (OER) is urgent for water electrolysis. Biomass-derived biochar has been considered as promising carbon material because of its advantages such as low-cost, renewable, simple preparation, rich structure, and easy to obtain heteroatom by in-situ doping. Herein, Ni2P–Fe2P bimetallic phosphide spherical nanocages encapsulated in N/P-doped pine needles biochar is prepared via a simple two-step pyrolysis method. Benefiting from the maximum synergistic effects of bimetallic phosphide and biochar, high conductivity of biochar encapsulation, highly exposed active sites of Ni2P–Fe2P spherical nanocages, rapid mass transfer in porous channels with large specific surface area, and the promotion in adsorption of reaction intermediates by high-level heteroatom doping, the (Ni0.75Fe0.25)2P@NP/C demonstrates excellent OER activity with an overpotential of 250 mV and a Tafel slope of 48 mV/dec at 10 mA/cm2 in 1 M KOH. Also it exhibits a long-term durability in 10 h electrolysis and its activity even improves during the electrocatalytic process. The present work provides a favorable strategy for the inexpensive synthesis of biochar-based transition metal electrocatalysts toward OER, and improves the water electrolysis for hydrogen production.  相似文献   
36.
The effects of surface and interior degradation of the gas diffusion layer (GDL) on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) have been investigated using three freeze-thaw accelerated stress tests (ASTs). Three ASTs (ex-situ, in-situ, and new methods) are designed from freezing ?30 °C to thawing 80 °C by immersing, supplying, and bubbling, respectively. The ex-situ method is designed for surface degradation of the GDL. Change of surface morphology from hydrophobic to hydrophilic by surface degradation of GDL causes low capillary pressure which decreased PEMFC performance. The in-situ method is designed for the interior degradation of the GDL. A decrease in the ratio of the porosity to tortuosity by interior degradation of the GDL deteriorates PEMFC performance. Moreover, the new method showed combined effects for both surface and interior degradation of the GDL. It was identified that the main factor that deteriorated the fuel cell performance was the increase in mass transport resistance by interior degradation of GDL. In conclusion, this study aims to investigate the causes of degraded GDL on the PEMFC performance into the surface and interior degradation and provide the design guideline of high-durability GDL for the PEMFC.  相似文献   
37.
This article proposes an active balancer, which features bidirectional charge shuttling and adaptive equalization current control, to fast counterbalance the state of charge (SOC) of cells in a lithium-ion battery (LIB) string. The power circuit consists of certain bidirectional buck-boost converters to transfer energy among the different cells back and forth. Owing to the characterization of the open-circuit voltage (OCV) vs SOC in LIB being relatively smooth near the SOC middle range, the SOC-inspected balance strategy can achieve more precise and efficient equilibrium than the voltage-based control. Accordingly, a compensated OCV-based SOC estimation is put forward to take into account the discrepancy of SOC estimation. Besides, the varied-duty-cycle (VDC) and curve-fitting modulation (CFM) methods are devised herein to tackle the problems of slow equalization rate and low balance efficacy, which arise from the diminution in balancing current as the SOC difference between the cells decreases in the later duration of equalization especially. The proposed strategies have taken the battery nonlinear characteristic and circuit parameter nonideality into account and can adaptively modulate the duty cycle with the SOC difference to keep balancing current constant throughout the balancing cycle. Simulated and experimental results are given to demonstrate the feasibility and effectiveness of the same prototype constructed. Compared with the fixed duty cycle and the VDC methods, the proposed CFM has the best balancing efficiency of 81.4%, and the balance time is shortened by 27.1% and 18.6%, respectively.  相似文献   
38.
39.
As one of the cleanest energies, hydrogen has attracted much attention over the past decade. Hydrogen can be produced using water electrolysis in a Proton Exchange Membrane Electrolysis Cell (PEMEC). In the present study, the performance of the PEMEC, powered by the Photovoltaic-Thermal (PVT) system, is scrutinized. It is considered that the PVT system provides the required electrical power of the PEMEC and preheats the feedwater. A comprehensive numerical model of the coupled PVT-PEMEC system is developed. The model is used to investigate the effect of various operating parameters, including solar radiation intensity, inlet feedwater temperature, and feedwater mass flow rate, on the hydrogen production and operating voltage of the PEMEC at various Exchange Current Densities (ECDs). Furthermore, the effect of integration of Phase Change Material (PCM) and Thermoelectric Generator (TEG) on the hydrogen production of the system is evaluated. According to the obtained results, the PVT-TEG-PEMEC system outperforms other systems in hydrogen production. However, integration of the PVT-PEMEC system with PCM has a negligible effect on its hydrogen production.  相似文献   
40.
This paper aims to provide a review of the conceptual design and theoretical framework of the main control schemes proposed in the literature for unmanned underwater vehicles (UUVs). Additionally, the objective of the paper is not only to present an overview of the recent control architectures validated on UUVs but also to give detailed experimental-based comparative studies of the proposed control schemes. To this end, the main control schemes, including proportional–integral–derivative (PID) based, sliding mode control (SMC) based, adaptive based, observation-based, model predictive control (MPC) based, combined control techniques, are revisited in order to consolidate the principal efforts made in the last two decades by the automatic control community in the field. Besides implementing some key tracking control schemes from the classification mentioned above on Leonard UUV, several real-time experimental scenarios are tested, under different operating conditions, to evaluate and compare the efficiency of the selected tracking control schemes. Furthermore, we point out potential investigation gaps and future research trends at the end of this survey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号